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A method is suggested for approximately bootstrapping Regge trajectories, thereby avoiding the cutoff
problems of the usual bootstrap calculation. The method is based on dispersion relations for Regge trajec-
tories and on unitarity applied at l =a. Successively more realistic approximations are described which bring
in more information on the potential, and more trajectories. The approximate Regge parameters are guaran-
teed to have the desired threshold and asymptotic properties.

I. INTRODUCTION we generalize the method in two stages, based on the
Khuri representation' for Regge poles. In Sec. IV we
generalize the method further, by discussing the
inclusion of several Regge poles in the coupled equa-
tions. It is interesting to see how details of the potential
come in through the positions of the zeros of the residue
functions. Section V describes the relativistic general-
ization of the method and its applicability to the boot-
strap. Finally, in Sec. VI, a brief comparison is made
with Chew's suggestions' for bootstrapping an entire
Regge trajectory.

~)NE basic drawback of previous bootstrap calcula-
~

~

tions has been the presence of arbitrary param-
eters (cutoffs and the like), which were necessary in
order to describe, at least crudely, the unknown high-
energy region. It is now believed that the high-energy
behavior of scattering amplitudes is controlled by Regge
trajectories corresponding to particles in the crossed
channels. Therefore, if a method could be developed to
carry out a bootstrap calculation of an entire Regge
trajectory, rather than simply of one point on that
trajectory, the high-energy region would itself be
capable of a self-consistent determination.

Nonrelativistic potential scattering is the natural
breeding ground for studying the properties of the
Regge poles, so we shall first search for a method of
computing Regge trajectories here. It is, of course,
essential to phrase the method in a way not tied
directly to the Schrodinger equation, but to express it
in language easily extendible to the relativistic case.
Perhaps the most obvious way to do this is to base the
method on the dispersion relations known to be satisfied
by the trajectories and their residues in potential theory.
The dispersion relations may then be supplemented by
unitarity to obtain a system of integral equations
which couple all trajectories together. One may then
construct approximations of (more or less) practicable
value by neglecting all but a few trajectories.

The simplest approximation is to neglect all but one
trajectory, and this case is discussed in Sec. II. The
equations obtained there have been used by Cheng and
Sharp' in a slightly modified form to compute approx-
imate Regge trajectories, but their technique is not
suitable for applications to bootstrapping because
the presence of undetermined parameters. In Sec. I

II. FIRST VERSION OF THE SINGLE
TRAJECTORY EQUATIONS

Our basic idea, as we have stated in the Introduction,
is to construct a method by which we can obtain, from
the bootstrap principle, the entire Regge trajectory
associated with a particle. The method we shall

suggest is based upon the use of the dispersion re-
lations satisfied by the trajectories and their assoc-
iated residue functions, and it will be helpful to discuss it
first within the context of the potential theory. Here, of
course, there is no question of bootstrapping a trajec-
tory; we can only carry out the calculation of trajec-
tories resulting from a given input potential. Neverthe-
less, there is a very close parallel between this and the
final proposal for a relativistic bootstrap. Furthermore,
the potential theory case, where exact solutions for the
trajectories exist, gives us an opportunity to Ineasure
the accuracy of our approximation.

It has by now been well established4 that the leading
Regge trajectories u„(s) in potential theory satisfy

*Work supported in part by the Alfred P. Sloan Foundation
and the U. S. Atomic Energy Commission.' H. Cheng and D. Sharp, Phys. Rev. 132, 1854 (1963).

e N. N. Khuri, Phys. Rev. 130, 429 (1963).' G. F. Chew, Phys. Rev. 129, 2363 (1963).' A. Barut and D. Zwanziger, Phys. Rev. 127, 974 (1962); and
H. Cheng, Phys. Rev. 130, 1283 (1963). Trajectories other than
the leading ones often cross and develop left-hand cuts. In that
case, (2.1) is not satiated. This case will be discussed further in
Sec. IV.

B1607



81608 F RAUTSCH I, KAUS, AN D ZACHARI ASEN

dispersion relations in the energy s of the form

1 dS
n„(s)=- —m+—

7I p $ —s—ze
Imn„(s') . (2.1)

It is also true that b (s), defined by'

&.()=~-()/'-& &, (2.2)

~(r) = dl ~(~),

b (s) has the asymptotic behavior

where
b„(s)~ (g'/2)s"-' as s —& ~, (2.3)

where P„(s) is the residue of the partial-wave amplitude
associated with the pole at l=n„(s), is an analytic
function of s with only a right-hand cut. For a super-
position of Yukawa potentials,

With the use of the dispersion relation for a„(s), Eq.
(2.5) can finally be transformed into

g' ~—i s —s, (1 " ds'
p„(s)=—II exp~—

2$ i=& (7I p S —S

s ImP (s')-)
&( Imn„(s') ln—+tan '

~

. (2.6)
s' ReP„(s') )

This equation, which, we remain the reader, is exact,
will be very useful in what follows.

The dispersion relations by themselves do not, of
course, constitute a dynamical scheme which may be
used for calculating anything. They Inust be supple-
mented by some information about the imaginary
parts. As is the case with the usual dispersion relation
for scattering amplitudes, this information is supplied
by unitarity.

The original representation derived by Regge, ~

expressing a scattering amplitude in terms of Regge
poles, allows one to write for the partial-wave amplitude
that

c.()
A(s, l)=g +8(s,l).

l—u„(s)
(2.7)

We may now use the analyticity of b„(s), this asympto-
tic behavior, and the fact, proved in Sec. IV, that
b„(s) has exactly e—1 zeros, to derive the following
useful representation for P„(s).

We consider the function

n—1

~()=l (&-()/II ( —;)),

1 " Imp(s')
Q(s) = In(g'/2)+ — ds'.

p S —$—Z6

(2 4)

Now Imp(s') is just the phase of.'. b„(s'), which, by Eq.
(2.2), is the same as the phase of P„(s') minus Ima„(s')
&(ln$'. Hence, we get

ImP. (s')
tan '---

ReP. (s')

ds—Imn„(s') logs' +n„(s) lns
~

. (2.5)
s' —s

~ We choose the particle mass equal to —,
' so that s=q~ where q

is the particle momentum.
6 As will be made evident in Sec. IV, the s; are real and negative

for normal trajectories; i.e., for trajectories with only the usual
right-hand cut in energy starting at s=0. For abnormal ones,
that is, trajectories which may for example cross and therefore
have additional branch points, the s; may be complex. The
derivation given here must then be modified in an obvious way.

where the s, are the locations of the zeros of b„(s).Note
that all the s, are real. This function is analytic with
a right-hand cut starting at S=O, has no singularities,
and asymptotically becomes ln(g'/2). Therefore,

The sum is over all Regge poles; B(s,l) is the contribu-
tion of the mysterious "background integral. " The
partial-wave amplitude satis6es the unitarity condition

LA(s, l) —A (s,P)*j/2i= (s)'~'A (s,l)A (s,P)* (2.8.)

Applying this at l=n gives us the equations

P *(~)

, +~(, .*())*,
2z(s)'~' n (s) —n„*(s)

+=1, 2, . (2.9)

(2.10)Imn = (s)'"P and ImP= 0.
"T.Regge, Nuovo Cimento 14, 951 (1959).

Equations (2.9) are an infinite set of relations connect-
ing the imaginary parts of the n's and P's, given the
function B.In conjunction with the dispersion relations,
they provide us with an inhnite set of coupled integral
equations for the trajectories. As a practical matter,
solving these equations is manifestly out of the question,
and some approximation is called for. One could, for
example, make the set of equations finite by discarding
all but a finite number, say Ã, of poles and residues.
Then the sum in Eq. (2.9) runs up to E, nz goes from
1 to E, and we have N complex or 2S real algebraic
equations for the 21V real quantities ImP and Ime.

To begin with, let us suppose we take E= j. and see
what happens. There is no reason to believe this will be
a terrible realistic approximation; one may argue that
if Ima is small, as it presumably will be at low and
high energies, and for weak potentials, then the term in
the sum with e= no will dominate in Eq. (2.9). On this
basis we may therefore also neglect 8, and Eq. (2.9)
reduces to
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g' 1 "ds'
Imn(s) = exp—

2(s) sl p s —s

(We drop the subscript 1 on n& and P&.) From Eq. (2.6) has been proposed by Khuri. ' It has the virtue of, under
we find (remember Pi has no zeros) certain plausible conditions, incorporating the entire

background integral contribution into the contribution
of the Regge poles. It looks like this:

This integral equation for Imn has several pleasing
features:

(i) It gives the correct asymptotic form for Imrr;
vis: Imn(s) ~ g'/2(s)"' as s ~po.

(ii) As s~0, it gives Imn(s) —+ s tP'+'I', which is
also correct.

(iii) If the scattering amplitude itself is approximated
by just one pole, whose trajectory satisfies Eq. (2.10),
so that

A (S,l) =P/(i rr), —

then the unitarity condition (2.8) is automatically
satisfied.

It has, in addition, several unpleasing features:

(i) The range of the potential does not occur in the
equation.

(ii) The coupling constant scales out, in that Imn(s)
is a function only of s/g .

The solution of Eq. (2.11) is thus some sort of
"universal" Regge trajectory, which is essentially
completely independent of the potential. This is
obviously physical nonsense, and it is not hard to Gnd

the source of the difFiculty. In the "one pole" approx-
imation used in obtaining Eq. (2.11),we have discarded
the "background term" B(s,l). Yet, a glance at Eq.
(2.1) shows us that the entire left-hand cut in energy
of the partial-wave amplitude A(s, l), and thereby all
information on the forces in the problem, is contained
in B(s,l). In order to make sense of an approach such
as this, then, it is essential to incorporate the "back-
ground term, "or part of it at least, into a practicable
approximation scheme. A way to do this will be sug-
gested in the following section.

III. KHURI MODIFICATION TO SINGLE
TRAJECTORY EQUATIONS

An alternative form of the Regge representation of a
scattering amplitude to the one which led to Eq. (2.9)

s H. Cheng and D. Sharp, Phys. Rev. 132, 1854 (1963) have
suggested replacing the unsubtracted dispersion relations for o, and
b by subtracted ones, with the subtraction constants O.p and bp,
and the subtraction points sp, considered to be parameters which
may be taken from an exact solution or from experiment. This
modiires Eq. (2.11) to

S—Sp dS
Ima =bps~o+'is exp « Imp. (s') ins/s'.

p (s' —so) (s' —s)

Some information about the forces is thus introduced through np,

bp, and sp. They find the approximate trajectories calculated in
this way to be surprisingly accurate at low energies. Asymptoti-
cally, of course, they become seriously wrong. For our purposes,
however, the presence of unspecified parameters renders this
approach useless.

where f= cosh '(1+srss/2s) and where m is the potential
range; that is, the potential is assumed to be expressible
as

with

V(r) = dls(e &"/r) o (Is)— (3.2)

4~(~)

and in the one pole approximation, this leads to an
integral equation for Imn slightly different from (2.11).
The phase of P(s) is now just minus 2$(s) Ima(s), so

by using (2.6) again, we obtain

g 1 ds
Imrr (s) = exp—

2(s)'~' m S —S
Imn(s')

&((Ins/s' —2$(s')) . (3.4)

The principal value is necessary on the integral, in
contrast to Eq. (2.11), since the $ term does not vanish
at s= s'.

Equation (3.4) retains the first two of the pleasing
features of Eq. (2.11). It is still true that Imu(s)
asymptotically approaches g'/2(s)'~s; it is also still
true that near threshold Imn(s) behaves like s~&P&+"'.

On the negative side, the unitarity condition is no
longer satisfied by the "one pole" approximation to the
scattering amplitude, except, of course, at l=n.

Numerical solutions to Eq. (3.4) have been obtained,
and compared with the exact solutions of Amadzadeh
et a/. ' for a single Yukawa potential. The general shape
of the exact results are reproduced by the approxima-
tion, but in magnitude the exact Imo. lies considerably
above the approximate one. The difference in magnitude
is about a factor of two for a coupling of g'=1.8; a
factor of three to four for g'= 5.

In this form, the approximate trajectory now does
depend on the potential strength and range in a non-

9 A. Amadzadeh, P. Burke, and C. Tate, Phys. Rev. 131, 131~
(1963).

Using this form for the partial-wave amplitude, the
analog of Eq. (2.9) is simply

P *(S)

2i(s)'~' n (s) n„*—(s)
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g' &„—r(1+m'/2s)——Z
2s ~=r l+n

exp) —(l+I)P7. (3.8)

This procedure has provided everything we asked
for, in that in this way we have constructed Regge pole

' A. Ahmadzadeh, Lawrence Radiation Laboratory Report
UCRL-10929 (unpublished), has also written down Eq. (3.8).
His numerical analysis of it encourages the belief that it will be
more useful than the original Kburi representation.

trivial way; it does not, however, depend on more subtle
details. One way to bring in more features of the
potential, through the inclusion of more Regge poles
in the approximation, will be described in Sec. IV.
Another way to do the same thing, by explicitly
extracting the Born-approximation term so that it
stands out by itself in the expression for the partial-
wave amplitude, will be described next.

For a single Yukawa potential, the Khuri representa-
tion is perhaps still not all we could desire. The original
motivation for constructing the Khuri form was to
arrange that each Regge pole term by itself had a cut
in the cos8 plane (8 is the scattering angle) from
1+no'/2s to ~, and thus eliminate the miraculous
calculation of cuts between 1 and 1+m'/2s required
among the Regge poles and background integral of the
old representation. For a superposition of Yukawa
potentials, as in Eq. (3.2), where the scattering ampli-
tude actually does have a cut all the way from cos8
=1+@2/2s to ~, the Khuri form is thus eminently
suitable. However, for a single Yukawa, the cut really
begins at cos8=1+4m'/2s; there is only an isolated
pole at cos8= 1jm'/2s. It would therefore be desirable
to have available a modified Khuri form in which each
Regge pole term has only these singularities in cos8.

Such a form may easily be constructed. We have only
to consider the difference of the scattering amplitude
and the Born approximation, and apply Khuri's argu-
ments to this function. Let

A (s, cos8) =A (s, cos8) —A n(s, cos8),

where the Born approximation is

g2 1
An($, cos8) =— (3 6)

2s (1+m'/2s) —cos8

and contains the pole at cos8=1+m'/2s. Since A
satisfies a dispersion relation in cos8, with 1+4m'/2s
as the lower limit on the dispersion integral, it is
reasonable to expect that the partial-wave amplitude is
bounded as follows:

A (s,l) & (l) 'I' exp( —Rely), (3.l)

where )=cosh '(1+4m'/2s). Blindly following Khuri's
arguments then yields trivially the representation"

P g
A (s,l) =P expL —(l—&-)H +—Qi(1+~'/»)

I—n~ 2$

terms each of which has a pole at cos8= 1+m'/2s and
a cut starting at cos8= 1+4m'/2s. It is, of course, not
true that each Regge term in this form of the representa-
tion satisfies the Mandelstam representation with the
correct boundary on the double spectral function. The
integration region here is just s&0, I)4p .

To obtain the "one-pole approximation" following
from this modified Khuri representation, we drop all
of the sums over Regge poles in Eq. (3.8) except that
containing the leading trajectory. In addition, we shall
throw away the sum I= 2 to ao in the last term of (3.8),
retaining only the n= 1 term. The partial-wave ampli-
tude then contains a moving pole at l=n, the largest
Regge pole, and in addition has fixed poles at 1=—2,—3, —4, , etc., coming from the Qg term. The pole
at l= —1 in Q& is cancelled by the piece we have kept
of the last term in Eq. (3.8). In this way, the approxima-
tion consists effectively in fixing all the trajectories
except the largest at their s= ~ values, and allowing
only the largest one to move as s is increased from —~.
If we did not discard all but the m= 1 part of the last
term in (3.8), but, say, kept all of it, our approximate
partial-wave amplitude would have only a single pole
in the / plane, namely, that at l=n. By retaining only
the m=1 piece, then, we have kept at least some effect
of the lower Regge poles in the approximation. Approx-
imately, then, we may write

g2
A (s, l) = expL —(l—n) f7+—Q~(1+en'/2s)

t—n 2$

g2

exp[ —(l+1)P, (3.9)
2s l+1

and consequently, by using the unitarity condition at
l=e, we have

g2

P = Imo. exp( —2i Immy) +i Q*(1+—mz'/2s)
(s)'" s

g—i— expL —(n*+1)g7 ~
. (3.10)

s n*+1

From this equation it is straightforward, though messy,
to calculate the phase of P in terms of u, and therefore,
through the dispersion relation for o,, in terms of Imn
alone. This phase and P itself may then be inserted into
Eq. (2.6) to get a frightening looking and remarkably
nonlinear integral equation for Imn. We shall not
explicitly write this equation.

Even though the integral equation for Imo. is terribly
complicated, it is not out of the question to obtain
numerical solutions of it, and attempts to do this are in
progress, again with the intent of comparing with the
exact results for a Yukawa potential.

It is not difficult to see, in spite of the complexity of
the integral equation, that the solution will have the
correct threshold and asymptotic properties. As s ~,
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for example, Eq. (3.10) becomes

(s)"'p= Imn, (3.11)

then the conditions for a zero of p„(s) become

D(s+,1)=D(s ,1)—=0. (4.4)

IV. COUPLED TRAJECTORIES

To derive the number of zeros" in 6„ for normal
trajectories (those with no left-hand cut), we need only
compare the known asymptotic limit,

b (s)~(g'/2)s" ' as s~"
for potential theory with the representation

1 (f&(s )ds
b„(s)=cg (s—s,) exp—

s —s
(4 1)

for a function analytic in s with only a right-hand cut.
The phase P of b„ is known to vanish both at s=0 and
s= ~. Therefore, the exponential in (4.1) approaches
a constant asymptotically, and b„s~. By comparison
with the known asymptotic form of b„, one finds

(4.2)

Thus, the first trajectory has no zeros, the second has
one zero, and so forth. Cheng and Sharp" have also
considered trajectories which have a left-hand cut and
find that the asymptotic form is still valid and the
phase still vanishes asymptotically; Eq. (4.2) holds
in general.

In the case of potential scattering, the zeros of b„(s)
are roots of finite polynomials, with coeflicients easily
determined in terms of moments of the potential. For a
normal trajectory, the zeros of b„(s) are the zeros of the
residues p„(s).

If the S matrix is expressed by

S(s,l) = e'n'D(s ,1)/D(s+, 1), —(4 3)
"H. Cheng and D. Sharp (Ref. 1) have already discussed this

topic. We reproduce the discussion here for completeness.

and, from Eq. (2.6), we see that consequently Imts~ g'/2(s)'~s. As s ~ 0, Eq. (3.10) also reduces to
(3.11) if n(0)) —is, and Eq. (2.6) shows us that
Imn s"&'&+'". Furthermore, the correct analyticity
properties of 0, are, of course, guaranteed, since the
whole approximation is based on use of the dispersion
relation for o.. Unfortunately, A(s, l) as expressed by
Eq. (3.9) does not satisfy unitarity except at 1=n.

The entire Born-approximation term appears explic-
itly in Eq. (3.9), so that the result depends on the full
details of the potential. Furthermore, through the
presence of the Born term, the correct asymptotic
behavior of A (s,l) in 1 as well as in s is guaranteed.

For these reasons, it may be desirable to use the
modified Khuri representation, and the approximations
generated from it (appropriately corrected, of course)
in the case of a superposition of Yukawa potentials,
even though the original motivation for constructing
the representation was present only for a single Yukawa
potential.

( 1)n ca

u "~(~)4, so= —g'. (4.6)

The power series solution for the wave function which
goes like r'+' near the origin is given by the recursion
relation

P(l,s,r)=r'+' P g y&

y=0
(4 7)

p —1

SG~—2+ E sncsp i n——
n=O

~L~+»+13
) cp= 1. (4.8)

In order to avoid poles in D(s,l) at all negative
integer and half-integer / values, we normalize by
putting

a„=a„/I'(21+2) . (4.9)

Due to this normalization, as a negative integer or
half-integer 1 is approached, the first 21+1 coeKcients
will vanish. The coefficient becomes

6 2~ y= llm

-2l —2

scl' 2 i s+ 2 sn+—2l——2 n-
n=0

—L21+1jei'(2l+2y e)

(—21—2)! —2l—2—g~&(2&+2) SC—2l—3 &n~—2l—2—n—(21+1) n=o

1=—1—1V/2, 1V=0, 1, ~ ~

"P.Kaus, Nuovo Cimento 29, 598 (1963)."H. Bethe (to be published)."S.Mandelstam, Ann. Phys. 19, 254 (1962).

(4.10)

This is the condition for indeterminacy points. "'3 The
condition can be met only at negative integer and half-
integer / values, as can be seen from the equation

D(s+,l)D(s, —1—1)—D(s,l)D(s+, 1 1)——
= —(2i/~) s+ sin2s. l. (4.5)

In the right-hand / plane, the wave function which
goes as r'+' at the origin is regular, and therefore D(s+,1)
and D(s, l) cannot vanish simultaneously since this
would make the wave function vanish identically. In
the left-hand / plane, this restriction does not apply.
Thus, at negative integer or half-integer / values,
whenever D(s+,1) vanishes, either D(s+, 1 1)——
vanishes' and some trajectory passes through the corre-
sponding positive 1, or D(s, l) vanishes, which defines
an indeterminacy point, and which is a necessary and
sufmicient condition that this l—s combination is some
n„(s) with the corresponding p„(s) vanishing.

The calculation of these points is straightfor-
ward. """ For the potential (3.2), we define the
moments



B1612 F RAUTS CH I, KAUS, AN D ZACHARIASEN

In general, the coefIicient a ~2g+1~ is now 6nite and
the solution starts with r ' and is therefore proportional
to the solution at —l—1 starting as r'+'. But for a
finite number of energies s;, the coefficient u (2~+1)
will vanish. In this case, all subsequent a„vanish and
consequently so do the functions D(l,s,+) and D(l,s, ),
which are the coefhcients of the exponentials of the
large r asymptotic form of the wave function.

The condition for indeterminacy points is now given
by

—2l—2

$4(4 2 l —2+—p Vn(l—2 l—2—n

g'/ sl 1 " ds' —
ImP2(s')

P2(s) =—
l

1——exp — tan-'
2s& s p S —S ReP, (s')

+Imnp(s') log (s/s'), (4.15)

and III, we always conhned ourselves to the largest
trajectory; however, with explicit expressions for the
zeros s, , we are now in a position to extend our discussion
to include additional trajectories.

For the second and third trajectories, for example,
we have

l= 1 N—/2, —N= 0, 1, ~, (4.11)

where a„ is given by the recursion relation (4.8).
For example, one obtains for the first few indeter-

minacy points:

n (sl)= —
2

a„(s2)= —2

n-(») =n-($4) = —
2

Sl Vp +Vl
S2= —(4)Vp +'Vl —'V2/Vp

sp(4) = (1/18) l
—10vp+ 18v,

—(+)4(4vp2 —54vpv2

+81vp)"'] etc. (4.12)

In the case of a single Yukawa potential, the indeter-
minacy points reduce to

-( )= —l
n„(s2) = —2

($)= ($)=—-'

S1=g 1Ã—
g

s2= —(-,')eP+g22)4 —(-', )g'

»(4) =g'2)2 —(5/9) g' —(+)(2/9)
X l (27/2)g22)22 —27g42242

+4g']'", etc. (4.13)

n2(sl) = —-', b2(sl) =0

np(sp) =
2 bp(sp) =0

ap($2)= —2 bp($2)=0, etc. (4.14)

This process can be continued, the s, appearing as
roots of polynomials of degree la„+1] fo—r n„a
negative interger and —

l n„+2] for n a negative
half-integer. As trajectories with larger e are computed
and coupled to the others, more moments of the
potentials are needed for the computation of the s;.
It is in this way that the detailed structure of the
potential eventually gets into the problem.

In Sec. II we derived an exact expression for the
residue function P„(s) LEq. (2.6)], which expressed it
in terms of its phase, its zeros, and Imn„(s). In Secs. II

%hen all the relevant trajectories are normal, which
is the case for strong attractive coupling, the top
trajectory does not use any of these points, n2(s) uses

sl to cross l= —2, and np(s) uses sp and s2 to cross
l= —

~ and —2, respectively. To cross higher negative-
integer and half-integer 3, the trajectories use the zeros
of D(—l—1, s+), i.e., the Mandelstam symmetry. "
Thus, we have the following information from the
indeterminacy points:

g' s2 $2) 1 " ds'
Pp(s) =—1—— 1——

l
exp—

2$ s s) lr p s —sI

p-( ) "pl —( .*( )—-( ))i(.)]1=—22(s)' ' g
n=1 n& S —nn $

Zg

Q „(,) (1+2)42/2$)
($)"'-

expL —(nv*($)+~)((s)]—Q P l(1+2)22/2$)
n„*(s)+In=1

P = 1, 2, , N. (4.17)

We now have a system of E integral equations coming
from (2.6) coupled by the N unitarity equations (4.17).

The approximate trajectories generated in this way
will, of course, not in general satisfy the requirements
that n2(sl) = —

2 and np(s2) = —2, ap($2) = —2. One could
guarantee these conditions, at the expense of the
correct asymptotic behavior of the o.'s, by replacing
the dispersion relation (2.1) with subtracted equations:

3 S—$1
02$= ——

2 7r

ds
Imnp(s'), (4.18)

(S —Sl) (S S)

s—$2) 5t's —$2) (s—sl)(s—s2)
I+

$2 —$2) 2 ($2—$2) 'r

dS
X Imnp(s') . (4.19)

(S Sl) (S $2) (S —S)

Whether it is more desirable to use unsubtracted
equations, thus obtaining approximate solutions which
behave correctly at large s, and giving up np(s2) = —2,

ImP2(s')
X tan ' +Imnp(s') log(s/s'), (4 16)

ReP2(s')

where sl, s2, and sp are given by Eq. (4.12).
The p (s) are again coupled to the n„(s) through the

unitarity condition at I=n. If the first X trajectories
are to be coupled, the g unitarity relations are
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etc., or using subtracted equations and losing the right
infinity behavior, is an open question. The values s&,

s2, s3, etc., are, presumably, closer to the region of small
positive $ (where we would like to have the least error)
than s= , and perhaps this argues in favor of the
subtracted form. On the other hand, use of the sub-
tracted equations leads to n($) that diverge as a power
of s in the limit s= ~, instead of merely approaching
the wrong numerical value.

It should be pointed out here that unitarity is not the
only condition coupling the P„($) to the n ($). An

equally valid, though perhaps not as fundamental
condition comes from the Mandelstam symmetry,
which states that

S($,l)=e' &"+'&S($, —/ —1). (4.20)

'~ V. ¹ Gribov and I. Ya. Pomeranchuk, Phys. Rev. Letters 9,
328 (1962)."B.R. Desai and R. G. Newton, Phys. Rev. 130, 2109 (1963).

Substituting the expression (3.8) for A ($,l) and
demanding satisfaction of (4.20) at E integers or half-
integers also gives S coupling equations of a similar

type as the unitarity condition.
The determination of a trajectory to any desired

accuracy by coupling in a sufhcient number of other
trajectories would now appear to be simply a computa-
tional question. However, the equations we have
written down are correct only for normal trajectories,
which means trajectories for which n and 5 are real
analytic functions of s with only a right-hand cut. It
is well established" " that infinitely many trajectories
do not have these properties. For instance, infinitely
many trajectories meet in pairs at a negative energy
8, split into a complex conjugate pair and meet again
at s=o and /= —-'„which is an accumulation point of
trajectories. " The behavior of these trajectories has
been studied by Newton and Desai."In this case, there
is a left-hand cut in s, from 8 to 0. The branch point 8
need not be real. In the case of a Yukawa potential
with g'=2 and m=1, the third trajectory, for example,
starting at l= —3 for s= —~, goes continuously to
l= —5 for $=+~, indicating a pair of branch points
in the complex s plane.

When the n($) and b($) have singularities other than
the right-hand cut, it is necessary to extend the disper-
sion integrals to include the additional cuts. For such
modified dispersion relations to be useful, it is, among
other things, necessary to know the locations of the
branch points and these are not under very good
control. (There is a possibility that they could be put
in as undetermined parameters and determined from
self-consistency, since the two trajectories involved
must become complex conjugate pairs and meet at
l= —sr at threshold. )

It has been observed by Cheng4 that even though
two trajectories meet, combinations such as nr+o. s,

Q.~o.2 and similar combinations for the b s remain real

analytic. It would be tempting to write the integral
equations for these combinations. However, it is then
no longer possible to express all the needed zeros of
functions such as br($)+bs($) in terms of low moments
of the potential, since these zeros do not have the
simple significance of the indeterminacy points.

There is some indication that the abnormal tra-
jectories may not be of great physical significance. In
the case of a Yukawa potential with g'= 2, for example,
the first and the second trajectories are normal, the
third is not. However, a calculation by Ahmadzadeh"
indicates that A($, l) at l=0, 1, and 2 is accurately
obtained by using the modified Khuri representation
(3.9) with only the two top trajectories included.
For stronger attractive potentials, more trajectories
will be needed for an accurate representation of the
partial-wave amplitude, but more of the top trajectories
will have become normal.

V. THE RELATIVISTIC CASE AND APPLICATIONS
TO BOOTSTRAP CALCULATIONS

In the preceding sections, a method for calculating
Regge trajectories and their residues for a superposition
of Yukawa potentials has been described. The input
used to formulate the method consisted of dispersion
relations for rr„($) (2.1) and b„($), unitarity (2.8), and
a relation allowing calculation of the zeros of b„($) in
terms of low-order moments of the potential (Sec. IV).
The method can be generalized to relativistic dynamics
by reformulating each input relation in relativistic
terms.

We start with the observation that generalized
potentials

1 4 pg(3, $)
Vdirect ($&1) =

t' —t
(5.1)

and
1 " du'p (I',$)

l exchange($&N) =
/

m I —S
(5.2)

can be defined, ' which play the same role in determining
the amplitude through dispersion relations as does the
nonrelativistic potential. 's We conjecture that n„($)
satisfies the dispersion relation

Imn ($') (5.3)

and that b„($) is again an analytic function of $ with
only a right-hand cut (as usual, crossing of trajectories
will introduce left-hand cuts into n and b„ in some
cases). Due to the more complicated nature of the
relativistic potential, the high-energy limits of O,„and b
are not generally known in advance. The elastic

» Henceforth, s takes on the usual relativistic signi6cance, e.g.,s=4m2+4g' for the equal mass case instead of the nonrelativistic
de6nition of s=q'.

's G. F. Chew and S. C. Frantschi, Phys. Rev. 124, 264 (1961).
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unitarity condition is changed from (2.8) only by a
kinematic factor:

LA(s, l) —A(s, l')'j/2i
= L(s—4m')/s]'"A(s, l)A(s,P)*. (5.4)

More generally, several channels can be coupled
together, turning the unitarity condition into a matrix
relation, but we shall not consider this complication.
The remaining input conditions, on the zeros of b„, were
derived in Sec. IV from properties of the Schrodinger
equation, which does not carry over directly to the
relativistic case. Nonrelativistic scattering can equi-
valently be described by Fredholm theory, however, in
which one can work directly with integrals over the
weight function of a superposition of Yukawa potentials.
Fivel" has shown how the zeros of b„appear in
Fredholm theory, and verified that one obtains the same
relations as in the Schrodinger method. His procedure
can perhaps be directly generalized to relativistic
dynamics, using the energy-dependent Yukawa weight
functions of Eqs. (5.1) and (5.2).

Thus, the procedure of the preceding sections for
computing trajectories and their residues from a given
potential can be followed exactly, with the obvious
changes due to the diQerent kinematic factor in the
unitarity relation. The exchange potential (5.2) makes
it necessary to consider even and odd signatures"
separately, thus reducing the problem to one where the
singularities in the potential occur only at positive t.

In our previous discussion, the details of the potential
could be introduced either through the zeros of b„, or
by explicitly adding the potential, or by both methods.
We shall continue to use both methods, but since the
relativistic potential is a complicated energy-dependent
function it seems best to place our main reliance on
including it explicitly in the amplitude. In other words,
the description of the potential through zeros of b„
probably converges more slowly when the potential is
energy-dependent.

In potential theory, we also had the option, for
trajectories starting to the left of f= —1, of fixing n (s)
at known indeterminacy points such as 1= ——,', or
fixing n„(~). Relativistically, we do not know the
asymptotic behavior of n (s) or b„(s) in advance, and
this increases the motivation for fixing o„at known
indeterminacy points whenever possible.

Now the relativistic potential can be described in
terms of scattering in crossed channels; in particular,
it can be related to the leading Regge trajectories in
the crossed channels. When this information is inserted
into the potential, we have a bootstrap calculation,
where the Regge poles parameters computed in the
s channel are required to be consistent with those in
the crossed channels.

» D. Fivel (private communication)."S.Frautschi, M. Gell-Mann, and F. Zachariasen, Phys. Rev.
126, 2204 (1962); and E. Squires, Nuovo Cimento 25, 242 (1962).

The description of the potential in terms of leading
Regge trajectories has been given by Chew, ' and we
can simply take over his results. It is convenient to
retain only the fairly long-range parts of the potential,
and n„(s) and b„(s) at fairly low s (strip approximation),
since we cannot calculate accurately the very short-
range potential or the asymptotic behavior of n (s) and
b„(s) anyway. Use of the strip approximation also
reduces the amount of doublecounting when the
potential and Regge terms in the s channel are added
together to form the amplitude; this is not a serious
problem in any case because each time a Regge pole is
added in the s channel, our procedure calls for subtract-
ing the corresponding pole out of the potential, as in
Eq. (3.9).

One final comment concerns the convergence of the
method. At t)0, leading trajectories in the potential
may rise to J(t)) 1, creating the possibility of diver-
gences. At t(0, however, all trajectories must remain
within the Froissart bound" J(t)(1.It is thus desirable
to express the partial-wave amplitudes A+(s, l) for
signatures & in terms of an integral over 1&0 instead of
the usual integration over 3,+ at t&0. The appropriate
formula has been given by Chew, ' following a suggestion
of Wong"

1

A+(.,f) =-
2 ]

sine)
a.g, (—.)A+(~,~).

"M. Froissart. , Phys. Rev. 123, 1053 (1961)."D.Wong (private communication to G. F. Che~, $962).

vr. DIScUSSrOm

Our proposal for making bootstrap calculations in
terms of Regge parameters is rather closely related to
the "generalized strip approximation" of Chew. ' The
difference is a technical one; we work directly with the
Regge parameters whereas Chew's approach involves
the iV/D method. A possible drawback of our proposal
relative to Chew's is that we are involved with nonlinear
equations even at the level of potential theory, where
the X/D method is still linear.

Both of these methods have certain deficiencies in
common. The asymptotic behavior of n„(s) and b (s)
is not known as s —+~ in the relativistic case; this may
not be of great importance because we are primarily
interested in these parameters at small s. Even at
small s, the usual Khuri factor gives correct threshold
behavior for A(s, t)~g" but not for ImA(s, l)~g 4'+'

This is directly related to the fact that the Khuri
factor implies a double spectral function with boundary
q,'=0, t=4u', instead of the correct curved boundary.
It is also presumably related to neglect of the infinite
set of trajectories that converge on /= ——,

' at threshold.
As discussed at the end of Sec. IV, there is some reason
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to hope that these neglected trajectories are not. of
great physical significance except in the immediate
vicinity of threshold.

Independently of our work, Mandelstam and Sharp"
have also generalized the one-pole equations described
in Sec. II. They continue to consider only one pole,
adding the relativistic potential and treating the Khuri

$ in a rather different manner.
Numerical calculations based on the potential theory

relations of Secs. II and III are in progress. It is hoped

"S. Mandelstam and D. Sharp (private communication).

that comparison with the exact results of Ahmadzadeh
ef u/. ' will give an idea of how rapidly the addition of
more Regge poles converges to the full potential theory
answer.
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